工业炉窑

当前位置:首页 > 工业炉窑
管式加热炉烧嘴|管式加热炉煤改气

1.加热炉热负荷。每小时传给油品的总热量称为加热炉热负荷(千卡/小时),表明加热炉能力的大小,国内炼油厂所用的管式加热炉最大热负荷在4200万千卡/小时左右。
2.炉管表面热强度。每平方米炉管单位表面积一小时内所吸收的热量叫炉管表面热强度(千卡/米·小时)。炉管表面热强度越高,在一定的热负荷下所用的炉管就越少,炉子的尺寸可减小,投资可降低,所以要尽可能地提高炉管的表面热强度。但炉管表面热强度不能无限制地提高,因为:①炉管表面热强度增加,管壁温度也会增加,靠近管壁处的油品就会因过热裂解而结焦附在管壁上,增加了传热阻力,又使管壁温度进一步增加,结焦不断增厚,如此恶性循环,严重时可烧坏炉管。所以要根据油品性质的不同控制合适的炉管表面热强度。加大管内油品流速,就不容易结焦,炉管表面热强度可适当高些。在检修时,须对炉管进行清焦处理。清焦的方法主要有空气-蒸汽烧焦法和机械清焦法。②加热炉炉膛内,各部分炉管的表面热强度是不同的,因为炉管距火焰的距离不同及炉管自身面向火焰面或背向火焰面等都会造成炉管受热不均。这样,局部的炉管表面热强度会大于全炉平均热强度,为防止局部过热,不得不降低全炉平均热强度,尽管这是不经济的。所以保证炉管受热均匀,提高全炉平均热强度,对延长炉管使用寿命是很重要的。

3.过剩空气系数。实际供给燃料燃烧的空气与理论空气量的比值叫做过剩空气系数。比如1公斤燃料从理论上计算需要14.3公斤空气正好完全燃烧,而实际供给的空气量是17.2,则过剰空气系数就是17.2/14.3=1.2。
在保证燃烧完全的前提下,使炉子在低而稳定的过剩空气系数下操作是有利的。过剩空气系数过小会造成燃烧不完全而浪费燃料;过剩空气系数过大,进入炉膛的空气量大,炉膛温度下降,影响传热效率,同时,也增加了烟气量。此外,烟气中的氧气较多,会使炉管表面氧化加剧,缩短炉管寿命。过剩空气系数通常取1.1~1.5左右。
4.全炉热效率。炉子热负荷与燃料发出的总热量之比叫全炉热效率。管式炉热效率一般为75%左右,目前先进的管式炉热效率为80%~85%,最高可达88%~92%,热效率高,表明相同的热负荷所耗的燃料量少。
燃料燃烧放出的热量,除被油品吸收外,其余的热量都被烟气带走和炉体散热损失掉。所以提高热效率的途径有:一是改进燃烧状况,使燃料完全燃烧;二是充分回收烟气热量;三是提高炉壁的保温质量,减少炉壁散热损失。

管式加热炉一般由三个主要部分组成:辐射室、对流室及烟囱,图5-1是一典型的圆筒炉示意图。
炉底的油气联合燃烧器(火嘴)喷出高达几米的火焰,温度高达1000~1500℃、主要以辐射传热的方式,将大部分热量传给辐射室(又叫炉膛)炉管(也叫辐射管)内流动的油品。烟气沿着辐射室上升到对流室,温度降到700~900℃。以对流传热的方式继续将部分热量传给对流室炉管内流动着的油品,最后温度降至200~450℃的烟气从烟囱排人大气。油品则先进入对流管再进入辐射管,不断吸收高温烟气传给的热量,逐步升高到所需要的温度。
辐射室是加热炉的核心部分,从火嘴喷出的燃料(油或气)在炉膛内燃烧,需要一定的空间才能燃烧完全,同时还要保证火焰不直接扑到炉管上,以防将炉管烧坏,所以辐射室的体积较大。由于火焰温度很高(最高处可达1500~1800℃左右),又不允许冲刷炉管,所以热量主要以辐射方式传送。在对流室内,烟气冲刷炉管,将热量传给管内油品,这种传热方式称为对流传热。烟气冲刷炉管的速度越快,传热的能力越大,所以对流室窄而高些,排满炉管,且间距要尽量小。有时为增加对流管的受热表面积,以提高传热效率,还常采用钉头管和翅片管。在对流室还可以加几排蒸汽管,以充分利用蒸汽余热,产生过热蒸汽供生产上使用。烟气离开对流室时还含有不少热量,有时可用空气预热器进行部分热量回收,使烟气温度降到200℃左右,再经烟囱排出,但这需要用鼓风机或引风机强制通风。有时则利用烟囱的抽力直接将烟气排入大气。由于抽力受烟气温度、大气温度变化的影响,要在烟道内加挡板进行控制,以保证炉膛内最合适的负压,一般要求负压为2~3mm水柱,这样既控制了辐射室的进风量,又使火焰不向火门外扑,确保操作安全。

特点:

一、管式加热炉烧嘴采用稳焰盘结构设计,确保燃气、空气燃烧口处均匀混合,充分燃烧,达到节能效果。

二、管式加热炉烧嘴已经注册商标“神之火”,并且多项实用新型专利技术。

   郑州中威环保设备有限公司承接天然气管式加热炉烧嘴设计、制作、施工工程项目,低氮排放,节能环保。

上一张:氧化镁轻烧炉窑烧嘴|氧化镁轻烧炉窑煤改气
下一张:推板窑炉烧嘴|推板窑炉煤改气